Origin of band gaps in graphene on hexagonal boron nitride
نویسندگان
چکیده
Recent progress in preparing well-controlled two-dimensional van der Waals heterojunctions has opened up a new frontier in materials physics. Here we address the intriguing energy gaps that are sometimes observed when a graphene sheet is placed on a hexagonal boron nitride substrate, demonstrating that they are produced by an interesting interplay between structural and electronic properties, including electronic many-body exchange interactions. Our theory is able to explain the observed gap behaviour by accounting first for the structural relaxation of graphene's carbon atoms when placed on a boron nitride substrate, and then for the influence of the substrate on low-energy π-electrons located at relaxed carbon atom sites. The methods we employ can be applied to many other van der Waals heterojunctions.
منابع مشابه
Tunable band gaps in bilayer graphene-BN heterostructures.
We investigate band gap tuning of bilayer graphene between hexagonal boron nitride sheets, by external electric fields. Using density functional theory, we show that the gap is continuously tunable from 0 to 0.2 eV and is robust to stacking disorder. Moreover, boron nitride sheets do not alter the fundamental response from that of free-standing bilayer graphene, apart from additional screening....
متن کاملTheory of resonant tunneling in bilayer-graphene/hexagonal-boron-nitride heterostructures
A theory is developed for calculating vertical tunneling current between two sheets of bilayer graphene separated by a thin, insulating layer of hexagonal boron nitride, neglecting many-body effects. Results are presented using physical parameters that enable comparison of the theory with recently reported experimental results. Observed resonant tunneling and negative differential resistance in...
متن کاملElectronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field
Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...
متن کاملMagneto-optical response of graphene: Probing substrate interactions
Magneto-optical transitions between Landau levels can provide precise spectroscopic information on the electronic structure and excitation spectra of graphene, enabling probes of substrate and many-body effects. We calculate the magneto-optical conductivity of large-size graphene flakes using a tight-binding approach. Our method allows us to directly compare the magneto-optical response of an i...
متن کاملAn atlas of two-dimensional materials.
The discovery of graphene and other two-dimensional (2D) materials together with recent advances in exfoliation techniques have set the foundations for the manufacturing of single layered sheets from any layered 3D material. The family of 2D materials encompasses a wide selection of compositions including almost all the elements of the periodic table. This derives into a rich variety of electro...
متن کامل